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Outline: 

2

Photo-Induced Near-field Electron Microscopy (PINEM) was first discovered in the group Ahmed Zewail
at Caltech during pump-probe femtosecond EELS experiments in a unique Ultrafast TEM. Femtosecond
laser excitation of nanostructures induces evanescent surface optical modes (surface plasmon
polaritons). These optical modes can modulate the longitudinal phase of the electron beam into
quantized energy loss and gain multiples of the exciting laser photon frequency. Experiments have
explored the quantum nature of PINEM and have shown coherent control of the phase, PINEM-based
holography, and the ability to shape the orbital angular momentum of the electron beam.

1) Photo-induced Near Field Electron Microscopy 

A. Can light and electrons interact?

B. Ultrafast TEM and first Observations

2) Coherent phase modulation

A. Rabi Oscillations- quantum walk

B. Electron-photon coupling constant - 𝒈

3) PINEM experiments

A. SPP velocity

B. Coherent control and attoseconds

C. Electron beam shaping
4) CWPINEM  
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KD

PINEM

How can fast electrons and photons interact? It should not be possible 

due to the momentum mismatch!!

3

In PINEM, interaction with the spatially confined light induces a longitudinal momentum change large enough 

to allow for electrons-photon to exchange energy, i.e., acceleration and deceleration of the electrons
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First observations of Photo-induced Near-Field effects

4

The intense fs light pulse couples into the carbon nanotube and generates 

electromagnetic modes (plasma resonances) that decay within a few ps
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Femtosecond Stroboscopic UTEM setup
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First observations of Photo-induced Near-Field effects
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The phase velocity of light is slowed in the media, allowing

momentum matching with electrons and for the exchange energy at

the quantized photon frequency of the exciting light
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Electrons scatter off the confined, evanescent optical field causing a 

modulation of their longitudinal phase (quantized energy) 
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Photon induced near-field electron microscopy (PINEM) can be used to 

study coherent photo-induced processes, such as plasmons

Fs optical excitation of nanostructures produces 
evanescent optical fields that interact with “aloof” 
electrons, giving them either an energy gain or loss 
equivalent to the quantized photons
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Brett Barwick, David J. Flannigan & Ahmed H. 
Zewail Nature 462, 902-906 (2009)

PINEM provides a means for determining “time 
zero” and temporal resolution of the electron bunch 

L. Piazza et al., Chem Phys 423, 79 (2013).
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Energy filtered TEM mapping in UTEM PINEM experiments

L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. 

Barwick, and F. Carbone,  Nature Communications 6 (1), 6407 (2015).

David J. Flannigan, Brett Barwick, and Ahmed H. Zewail,  Proceedings of 

the National Academy of Sciences 107 (22), 9933 (2010).
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Surface plasmons polaritons and plasma resonances
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Piazza et al., Nat. 
Comm. 6 6407 (2015)

Lummen et al., Nat. Comm. 7 13156 (2016)
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Coherent control of plasma resonances
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Vanacore, et al. Nat. Comm 9 2694 (2018)
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Holographic PINEM using gratings and optical gating
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Holography of plasma resonance
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• Attosecond mapping of plasmon propagation
• Direct measurement of group and phase velocity

Madan et al, Science Advances 6 
eaav8358 (2019)

News and Views article: Ropers, 
Nature  571, 331 (2019)
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Time-resolved Vortex Electron beams generated by PINEM
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Using the holographic interference of light 

from a circular hole in the Ag film, a chiral 

plasmonic field develops that couples to 

the electron plane wave via the PINEM 

effect, creating an electron vortex beam 

carrying orbital angular momentum.  

PINEM can be used to tailor the electron wave function!
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Coherent control of vortex beams
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Three pulses experiment: attosecond 
control of the topological charge of an 
e- wavefunction between  +1 and -1
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Patterned femtosecond light can be used to shape electron pulses, e.g, 

generate femtosecond vortex electron beams
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Ultrafast Transverse Modulation of Free Electrons by Interaction with 

Shaped Optical Fields, I. Madan et. al, ACS Photonics 2022, 9, 10, 3215–3224
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Continuous Wave –PINEM in conventional microscopes using quasi-

phase-matched silicon-photonic nanostructures
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Dahan et al., Science 373, 1324 (2021)

They could observe quantum statistics 

effects of photons on free-electron–light 

interactions and the transitions from 

quantum walk to classical random walk 

on the free-electron energy ladder.

• Attosecond metrology

• Quantum optics applications

• Quantum tomography of light

• Ramsey Holography
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Quantum walk and coherent phase modulation of free electrons by light
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R. Dahan et. al., Imprinting the quantum statistics of photons on free electrons. Science 373 (6561), 2021
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Phase matching between 120-keV electrons and the modes of a Si3N4 microresonator -> 
greatly enhanced interaction distance

Allows for performing the PINEM experiments in CW mode of a TEM (normal TEMs)

Prospective for electron beam shaping, single electron detector technology, etc.

High-Q Microring Resonators provide strong coupling of photons with 

electron and enable CW-PINEM
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Electron Spectrometer Calibration

20

Manufacturers verify the dispersion calibration 

using white lines Ni L-edge and O K-edge from 

known NiO sample composition
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Current calibration methods fall short…

21

P.L. Potapov et al., 
Ultramicroscopy 99, 73 (2004)

Drift Tube Scan of the ZLP across spectrometer detector

– Relative calibration precision of 0.03%

– Measures nonlinearities

– Vulnerable to instrument instabilities

– No real-time drift correction

– Time consuming

R.W.H. Webster et al., Ultramicroscopy 217, 113069 (2020)

NiO standard and commercial techniques
⁻ Calibration precision is realistically ~1%
⁻ No way to measure nonlinearity of spectrometer

Cumulative errors can be hundreds meVs to serval eVs!
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Electron Spectrometer Calibration device

22
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CWPINEM is useful tool for frequency based metrology with electrons

23

“High-Q”-106 microring resonators can modulate the
longitudinal phase of free electrons in conventional
TEM (CW-PINEM) that act like an energy ruler

By making a coherent 
frequency link between 
optical and CWPINEM, one 
can calibrate the dispersion 
of electron spectrometers 
with ~10 µeV/ch precision

This method can also be used to correct 
nonlinearities and drift with µeV/ch precision
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Summary

• Light and electrons can interact under special conditions in which their phase 
velocities are similar (phase matching) 

• Under “phase-matched” conditions, electrons can absorb and emit photons 
modulating the electron energy with quantized photon energy- PINEM spectra 
with sidebands spaced by the photon energy.

• Using the TEM, PINEM can achieve high spatial (nanometer) and temporal 
(attosecond) resolution, allowing the study of the interaction between light and 
matter with high precision.
– Applications for Plasmonics devices: For observing surface plasmon resonances and 

understanding the behavior of metallic nanostructures 

– Application Photocatalysis: Examination of photocatalytic processes at the nanoscale 
for developing efficient catalytic materials.

– Applications in Nanophotonics: For studying of optical antennas that can enhance 
light emission and absorption at the nanoscale.

– Applications in Low Dose Imaging: Ramsey Holography, Ghost imaging, shaped 
electron beams–chiral electron beams

24
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QUESTIONS?
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