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Photo-Induced Near-field Electron Microscopy (PINEM) was first discovered in the group Ahmed Zewall
at Caltech during pump-probe femtosecond EELS experiments in a unique Ultrafast TEM. Femtosecond
laser excitation of nanostructures induces evanescent surface optical modes (surface plasmon
polaritons). These optical modes can modulate the longitudinal phase of the electron beam into
quantized energy loss and gain multiples of the exciting laser photon frequency. Experiments have
explored the quantum nature of PINEM and have shown coherent control of the phase, PINEM-based
holography, and the ability to shape the orbital angular momentum of the electron beam.

1) Photo-induced Near Field Electron Microscopy
A. Can light and electrons interact?
B. Ultrafast TEM and first Observations
2) Coherent phase modulation
A. Rabi Oscillations- quantum walk
B. Electron-photon coupling constant - |g|
3) PINEM experiments
A. SPP velocity
B. Coherent control and attoseconds

C. Electron beam shaping
4) CWPINEM
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How can fast electrons and photons interact? It should not be possible

due to the momentum mismatch!!
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In PINEM, interaction with the spatially confined light induces a longitudinal momentum change large enough

to allow for electrons-photon to exchange energy, i.e., acceleration and deceleration of the electrons

C \
E=—p \
n \

0

250 500 750 1000
Momentum, cp (keV)

2.0

Energy, o/w,
o - -
o o »

o
o

Recaol i
eli?tjrlon/ C electrons light
[ hw
Ee
elactron -7
- "R+¢ k 4
4
& noor o —
[ 7. Scattered i
! 7 -~ photon field nano-
. structure
mye /’.L -
+
f PINEM, Be * how
. N
Temporal Confinement 0\0 ;\\00,
X -
At & Aw QQ 6@(\‘,
fo AN
. . ] -
Spatial Confinement ! 1795
1 Az & Ak,
: 1~ " PINEM
i~
-4
———
P
'
Z ”
—— et == PINEM (longitudinal)
KDE
'{ KDE (transverse)
-0.5 0.0 0.5 1.0 1.5 2.0 2.5

Longitudinal Momentum, k_/k,

thomas.lagrange@epfl.ch e www.epfl.che lumes.epfl.che +41 (0)21 6935861



First observations of Photo-induced Near-Field effects

LETTERS

Photon-induced near-field electron microscopy

Brett Barwick', David J. FIannigan1 & Ahmed H. Zewail'
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The intense fs light pulse couples into the carbon nanotube and generates

electromagnetic modes (plasmaresonances) that decay within a few ps
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Femtosecond Stroboscopic UTEM setup
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First observations of Photo-induced Near-Field effects
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The phase velocity of light is slowed in the media, allowing

momentum matching with electrons and for the exchange energy at
the quantized photon frequency of the exciting light
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Electrons scatter off the confined, evanescent optical field causing a =Pr-L
modulation of their longitudinal phase (quantized energy)

Bessel function of the first Change in the energy and
kind of order k momentum distribution
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Photon induced near-field electron microscopy (PINEM) can be used to
study coherent photo-induced processes, such as plasmons

Fs optical excitation of nanostructures produces

a | Electron energy gain/loss

evanescent optical fields that interact with “aloof” H
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PINEM provides a means for determining “time
Brett Barwick, David J. Flannigan & Ahmed H.

Zewail Nature 462, 902-906 (2009)

zero” and temporal resolution of the electron bunch

thomas.lagrange@epfl.ch e www.epfl.che lumes.epfl.che +41 (0)21 6935861

I
o
"1
=



Electron Counts

Energy filtered TEM mapping in UTEM PINEM experiments
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David J. Flannigan, Brett Barwick, and Ahmed H. Zewail, Proceedings of
the National Academy of Sciences 107 (22), 9933 (2010).
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Barwick, and F. Carbone, Nature Communications 6 (1), 6407 (2015).
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Surface plasmons polaritons and plasma resonances
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Coherent control of plasma resonances
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Vanacore, et al. Nat. Comm 9 2694 (2018)
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Holographic PINEM using gratings and optical gating

Holographic imaging of electromagnetic fields via
electron-light quantum interference

I. Madan*, G. M. Vanacore'*, E. Pomarico', G. Berruto', R. J. Lamb?, D. McGrouther?,
T. T. A. Lummen'T, T. Latychevskaia’, F. J. Garcia de Abajo**, F. Carbone'

Conventional PINEM Holographic PINEM
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Holography of plasma resonance
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Madan et al, Science Advances 6 A= 435.96 o
eaav8358 (2019) '
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Nature 571, 331 (2019) WS
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* Attosecond mapping of plasmon propagation
* Direct measurement of group and phase velocity
LUMES
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Time-resolved Vortex Electron beams generated by PINEM

nature
materials

Ultrafast generation and control of an electron
vortex beam via chiral plasmonic near fields

G. M. Vanacore®"°*, G, Berruto™®, I. Madan’, E. Pomarico’, P. Biagioni©?, R, J. Lamb?,
D. McGrouther?, O. Reinhardt?, I. Kaminer?, B. Barwick5, H. Larocque®, V. Grillo’, E. Karimi®,
F. ). Garcia de Abajo®?° and F. Carbone’

Using the holographic interference of light
from a circular hole in the Ag film, a chiral

plasmonic field develops that couples to
the electron plane wave via the PINEM
effect, creating an electron vortex beam
carrying orbital angular momentum.

ARTICLES

https://doi.org/10.1038/541563-019-0336-1
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Coherent control of vortex beams
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Ultrafast Transverse Modulation of Free Electrons by Interaction with
Shaped Optical Fields, I. Madan et. al, ACS Photonics 2022, 9, 10, 3215-3224
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Patterned femtosecond light can be used to shape electron pulses, e.g,

I
o
"1
=

generate femtosecond vortex electron heams

- ———

spatial light
modulator

\

\

electron

Gaussian beam Hermite- Gaussmn (HG) beams 7
m
b SLM phase
pattern 0
sha:% | il _17/2
light wave o o V d

electron
wave

electron
beam

10 ym

Delay time (ps)

light beam

SLM phase pattern o

-20 15 -10 -5 o 10 5 15 20
Energy Loss (eV)

thomas.lagrange@epfl.ch e www.epfl.che lumes.epfl.che +41 (0)21 6935861 = 2



Continuous Wave —PINEM in conventional microscopes using quasi-

phase-matched silicon-photonic nanostructures

RESEARCH ARTICLE SUMMARY

QUANTUM OPTICS
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Imprinting the quantum statistics of photons Q—r
on free electrons initial ‘
electron ?
Raphael Dahant, Alexey Gorlacht, Urs Haeuslert, Aviv Karnielit, Ori Eyal, Peyman Yousefi,
Mordechai Segev, Ady Arie, Gadi Eisenstein, Peter Hommelhoff, Ido Kaminer®
Dahan et al., Science 373, 1324 (2021)
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Quantum walk and coherent phase modulation of free electrons by light cPrL
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R. Dahan et. al., Imprinting the quantum statistics of photons on free electrons. Science 373 (6561), 2021
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High-Q Microring Resonators provide strong coupling of photons with
electron and enable CW-PINEM

. Integrated photonics enables
TEM ! continuous-beamelectronphase modulation

https://doi.org/10.1038/s41586-021-04197-5 Jan-Wilke Henke'?**, Arslan Sajid Raja®**, Armin Feist'?, Guanhao Huang®*, Germaine Arend'?,
Yujia Yang®*, F. Jasmin Kappert'?, Rui Ning Wang®*, Marcel Méller'?, Jiahe Pan®*,
Jungiu Liu*?, Ofer Kfir'?, Claus Ropers"** & Tobias J. Kippenberg®*™*

Received: 7 May 2021

Accepted: 1November 2021
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» Phase matching between 120-keV electrons and the modes of a Si3N4 microresonator ->
greatly enhanced interaction distance

» Allows for performing the PINEM experiments in CW mode of a TEM (normal TEMs)

» Prospective for electron beam shaping, single electron detector technology, etc.
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Electron Spectrometer Calibration

NH,
LS 9%
A

ELSEVIER

ultramicroscopy

Ultramicroscopy 55 (1994) 43-54

Characterization of an analytical electron microscope
with a NiO test specimen

R.F. Egerton, S.C. Cheng

Physics Department, University of Alberta, Edmonton, Canada T6G 271
Received 20 October 1993; in final form 31 March 1994

Manufacturers verify the dispersion calibration

using white lines Ni L-edge and O K-edge from
known NiO sample composition
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Fig. 2. Core-loss region of the electron energy-loss spectrum
of a 47 nm NiO specimen, recorded using the Gatan 666

parallel-recording spectrometer with 200 keV electrons and
14 mrad collection semi-angle.
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Current calibration methods fall short...

. : . |
NiO standard and commercial techniques St bertet et
Calibration precision is realistically ~1% S AL | g inereasing |
. . - | | drift tube lvoltage
No way to measure nonlinearity of spectrometer B | | TR
_ 18 1eV/ =
2 4,11 PL.Potapovetal., channel ‘
s Ultramicroscopy 99, 73 (2004) 0.3eV/ 0 WIWIVAWI VLW Wi Wi W WAL WAL WAL
s 17 channgl 1800 1900 )
£ gl /}E Channel Number
E -
E 7 - .
7 0.05eV/ Drift Tube Scan of the ZLP across spectrometer detector
— 5.
c ] channel . . . .
E . — Relative calibration precision of 0.03%
§ 1. V\, — Measures nonlinearities
% 19 500 600 700 800 900 1000 — Vulnerable to instrument instabilities
8 3_' Nominal channel number . . .
"~ — No real-time drift correction
5

— Time consuming

Cumulative errors can be hundreds meVs to serval eVs! R.W.H. Webster et al., Ultramicroscopy 217, 113069 (2020)
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Electron Spectrometer Calibration device
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Microwave

“High-Q”-10° microring resonators can modulate the
longitudinal phase of free electrons in conventional P
TEM (CW-PINEM) that act like an energy ruler
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By making a coherent |
frequency link between ¢ T D E |
optical and CWPINEM, one
can calibrate the dispersion
of electron spectrometers
with ~10 peV/ch precision
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This method can also be used to correct
nonlinearities and drift with peV/ch precision
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Summary

Light and electrons can interact under special conditions in which their phase
velocities are similar (phase matching)

Under “phase-matched” conditions, electrons can absorb and emit photons
modulating the electron energy with quantized photon energy- PINEM spectra
with sidebands spaced by the photon energy.

Using the TEM, PINEM can achieve high spatial (hanometer) and temporal
(attosecond) resolution, allowing the study of the interaction between light and
matter with high precision.

— Applications for Plasmonics devices: For observing surface plasmon resonances and
understanding the behavior of metallic nanostructures

— Application Photocatalysis: Examination of photocatalytic processes at the nanoscale
for developing efficient catalytic materials.

— Applications in Nanophotonics: For studying of optical antennas that can enhance
light emission and absorption at the nanoscale.

— Applications in Low Dose Imaging: Ramsey Holography, Ghost imaging, shaped
electron beams—chiral electron beams
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